Enhancing Computational Performance using CPU-GPU Integration
ثبت نشده
چکیده
The scope of computers has been expanding into increasing number of fields. With the growing need for computationally intense applications in every field, it is necessary to constantly meet the demands of performance requirements. The performance of the system relies heavily upon the processor and therefore the development of this technology is crucial. The processors of this age are handling growing amounts of data that depend on the speed, efficiency and data handling capacity of the processors. The scope of pushing the performance of a single processor has reached its threshold owing to factors such as cost, heat and power consumed. This lead to the advent of the age of multicore processor technology. But this model is also approaching a plateau in its scope by 2017 as predicted by Moore’s Law. It is imperative that an alternate and viable technology that produces high performance is found. GPUs are the answer to the search for such a highly powerful yet feasible technology. These units are capable of handling computationally intense tasks by performing the operations on huge data sets in parallel. This type of parallel processing breaks the problem into discrete parts that can be solved concurrently. So while the conventional CPUs use the power of a single core to solve a problem, the GPU solves the same problem using about a hundred processors. So, while increasing the number of cores in a processor is not possible, integrating CPUs with GPUs and passing the intense workloads to the GPU, which will process it faster, to achieve an overall high performance is a viable model. Coherence between the two units is important to distribute the workload such that the parts with large data, that suit parallel processing is handled by GPU and the serial tasks are controlled by the CPU. General Terms Multicore processors, Graphic Processing Units.
منابع مشابه
Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملFinite Element Matrix Generation on a Gpu
This paper presents an efficient technique for fast generation of sparse systems of linear equations arising in computational electromagnetics in a finite element method using higher order elements. The proposed approach employs a graphics processing unit (GPU) for both numerical integration and matrix assembly. The performance results obtained on a test platform consisting of a Fermi GPU (1x T...
متن کاملParallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملTranformation of CPU-based Applications To Leverage on Graphics Processors using CUDA
Scientific computation requires a great amount of computing power especially in floating-point operation but a high-end multi-cores processor is currently limited in terms of floating point operation performance and parallelization. Recent technological advancement has made parallel computing technically and financially feasible using Compute Unified Device Architecture (CUDA) developed by NVID...
متن کاملAn investigation of GPU-based stiff chemical kinetics integration methods
A fifth-order implicit Runge–Kutta method and two fourth-order exponential integration methods equipped with Krylov subspace approximations were implemented for the GPU and paired with the analytical chemical kinetic Jacobian software pyJac. The performance of each algorithm was evaluated by integrating thermochemical state data sampled from stochastic partially stirred reactor simulations and ...
متن کاملA hybrid computing method of SpMV on CPU-GPU heterogeneous computing systems
Sparsematrix–vectormultiplication (SpMV) is an important issue in scientific computing and engineering applications. The performance of SpMV can be improved using parallel computing. The implementation and optimization of SpMV on GPU are research hotspots. Due to some irregularities of sparse matrices, the use of a single compression format is not satisfactory. The hybrid storage format can exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015